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a b s t r a c t

Let G = (V , E) be a connected graph. H denotes a family of pairwise disjoint graphs
{Hv}v∈V . The Zykov sum of G and H, denoted by G[H], is the graph obtained from G
by replacing every vertex v of G with graph Hv and all vertices of Hu,Hv are adjacent
if uv ∈ E. In this paper, we first give a decomposition formula for the independence
polynomial I (G[H]; x). Then, we derive a formula expressing the Fibonacci number of
G[H] in terms of the independence polynomial of graph G and the Fibonacci number of
Hv . Finally, as applications, we compute the independence polynomials and the Fibonacci
numbers of several interesting graphs, such as the windmill graphs, the path network
and the ring network.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper G = (V , E) is a connected and simple graph with vertex set V = V (G) and edge set E = E(G).
Let |V | denote the cardinality of V . For S ⊆ V (G) we use G − S for the subgraph induced by V (G) − S, and write
G − v, whenever S = {v}. The neighborhood of a vertex v ∈ V (G) is the set N(v) = {u : u ∈ V (G), uv ∈ E(G)}, and

[v] = N(v) ∪ {v}. The join of two disjoint graphs G1 and G2 is the graph G1 + G2 such that V (G1 + G2) = V (G1) ∪ V (G2)
nd E(G1 + G2) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}. We use Kn, Pn, Cn and Sn for a complete graph, a path, a

cycle and a star, all of order n, respectively.
An independent set in graph G is a set of pairwise non-adjacent vertices. The independence number α(G) is the cardinality

of a maximum independent set of G. The set of all independent sets of G is denoted by Ind(G). Let fk = fk(G) be the number
f independent sets of cardinality k in G, with the convention that f0 = 1. The idea of counting independent sets in graphs

seems to begin with a paper of Prodinger and Tichy [20] in which they defined, for a graph G, the Fibonacci number f (G) to
e the total number of independent sets of G, that is, f (G) = |Ind(G)| =

∑α(G)
k=0 fk. f (G) is a parameter of interest to chemists

nd is the so-called Merrifield–Simmons index [3,10,13,16–19,24] of a graph which is related to stability in molecules. The
polynomial

I(G; x) =

α(G)∑
k=0

fkxk =

∑
I∈Ind(G)

x|I|

is called the independence polynomial of G [7], or the Fibonacci polynomial of G [9]; see also [6,15,21–23,25,26].
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Let HG be a family of pairwise disjoint graphs {Hv}v∈G. The Zykov sum [1,4,27] (or generalized join, [2]) G[HG] of G and
HG is the graph obtained from G by replacing every vertex v of G with graph Hv and all vertices of Hu and Hv are adjacent
if uv ∈ E(G), that is, V (G[HG]) =

⋃
v∈V (G) V (Hv) and

E(G[HG]) =

⎛⎝ ⋃
v∈V (G)

E(Hv)

⎞⎠ ∪

⎛⎝ ⋃
uv∈E(G)

{st : s ∈ V (Hu), t ∈ V (Hv)}

⎞⎠ .

For example, the join G1 + G2 is the Zykov sum P2[G1,G2]. The composition (or lexicographic product) of two disjoint
graphs G and H , denoted by G[H], as the Zykov sum, where Hv = H for every v ∈ V (G). The independence polynomial
and the Fibonacci number of the composition graph G[H] have been studied by Brown et al. [1] and Dosal-Trujillo and
Galeana-Sanchez [4]. In this paper, motivated by the previous results, we consider the independence polynomial and the
Fibonacci number of the Zykov sum G[HG].

2. Preliminary results

In this section, we list some necessary results which are needed in this paper.

Lemma 2.1. Let G,H be graphs.
(i) [7] I(G; x) = I(G − v; x) + xI(G − N[v]; x) for each v ∈ V (G).
(ii) [1,4] I(G[H]; x) = I(G; I(H; x) − 1) and f (G[H]) = I(G; f (H) − 1).
(iii) [8] I(G1 + G2; x) = I(G1; x) + I(G2; x) − 1.

Lemma 2.2 ([9,22]). (i) I(Kn; x) = 1 + nx;
(ii) I(Sn; x) = x + (1 + x)n−1;

(iii) I(Pn; x) =
∑⌊

n+1
2 ⌋

k=0

(n+1−k
k

)
xk;

(vi) I(Cn; x) = 1 +
∑⌊

n
2 ⌋

k=1
n
k

(n−1−k
k−1

)
xk.

Dosal-Trujillo and Galeana-Sanchez [4] generalized Lemma 2.1(i) to vertex subset elimination.

Lemma 2.3 ([4]). If G is a graph with U a subset of its vertices, such that for every u, v ∈ U, N(u) ∩ (V (G) − U) = S =

N(v) ∩ (V (G) − U) and H is the vertex induced subgraph G⟨U⟩, then

I(G; x) = I(G − U; x) + (I(H; x) − 1) I (G − (U ∪ S); x) .

3. The independence polynomial of G[HG]

In this section, we want to generalize Lemma 2.1(ii).

Lemma 3.1. Let G be a connected and simple graph and let HG = {Hv}v∈V (G) be a family of pairwise disjoint graphs. v is a
vertex of G. Then

I (G[HG]; x) = I ((G − v)[HG−v]; x) + (I(Hv; x) − 1) I
(
(G − N[v])[HG−N[v]]; x

)
.

Proof. Let U = V (Hv). Then G[HG] − U is isomorphic to (G − v)[HG−v] and G[HG] − (U ∪ S) is isomorphic to
(G − N[v])[HG−N[v]], the result follows from Lemma 2.3. □

Theorem 3.2. Let G be a connected and simple graph and let HG = {Hv}v∈V (G) be a family of pairwise disjoint graphs. v is a
ertex of G. Then

I (G[HG]; x) = 1 +

∑
∅̸=I∈Ind(G)

∏
v∈I

(I(Hv; x) − 1). (1)

articularly, if I(Hv; x) = c(x) for every v ∈ V (G), then

I(G[HG]; x) = I(G; c(x) − 1).

roof. We will proceed by induction on |V (G)|.
When |V (G)| = 1, we have I(G; x) = 1 + x, and I(G[Hv]; x) = I(Hv; x) = 1 + (I(Hv; x) − 1).
Suppose that Eq. (1) is true for every graph G′ with 1 ≤ |V (G′)| < n. Let G be a graph of order n and let u be a vertex

f G. Ind•(G) denotes the set of all nonempty independent sets of G, i.e. Ind•(G) = Ind(G) − {∅}. Let P = Ind•(G − u),
134



Y. Liao, M.A. Aziz-Alaoui and Y. Hou Discrete Applied Mathematics 306 (2022) 133–137

d

4

r

Q = {I ∪ {u} : I ∈ Ind•(G − N[u])}, R = {u}. It is clear that P,Q , R are disjoint subsets of Ind•(G) and Ind•(G) = P ∪ Q ∪ R.
Moreover,∑

I∈P

∏
v∈I

(I(Hv; x) − 1) =

∑
I∈Ind•(G−u)

∏
v∈I

(I(Hv; x) − 1);

∑
I∈Q

∏
v∈I

(I(Hv; x) − 1) = (I(Hu; x) − 1)

⎛⎝ ∑
I∈Ind•(G−N[u])

∏
v∈I

(I(Hv; x) − 1)

⎞⎠ ;

∑
I∈R

∏
v∈I

(I(Hv; x) − 1) = I(Hu; x) − 1.

By Lemma 3.1, we have:

I (G[HG]; x) = I ((G − v)[HG−v]; x) + (I(Hv; x) − 1) I
(
(G − N[v])[HG−N[v]]; x

)
.

Using the inductive hypothesis in I ((G − u)[HG−u]; x) and I
(
(G − N[u])[HG−N[u]]; x

)
, we have:

I(G[HG]; x) = 1 +

∑
I∈Ind•(G−u)

∏
v∈I

(I(Hv; x) − 1)

+ (I(Hu; x) − 1)

⎛⎝ ∑
I∈Ind•(G−N[u])

∏
v∈I

(I(Hv; x) − 1)

⎞⎠ + (I(Hu; x) − 1)

= 1 +

∑
I∈P

∏
v∈I

(I(Hv; x) − 1) +

∑
I∈Q

∏
v∈I

(I(Hv; x) − 1) +

∑
I∈R

∏
v∈I

(I(Hv; x) − 1)

= 1 +

∑
I∈Ind•(G)

∏
v∈I

(I(Hv; ) − 1).

Thus, Eq. (1) holds. If I(Hv; x) = c(x) for every v ∈ V (G), then

I (G[HG]; x) = 1 +

∑
∅̸=I∈Ind(G)

∏
v∈I

(c(x) − 1)

= 1 +

∑
∅̸=I∈Ind(G)

(c(x) − 1)|I|

= I(G; c(x) − 1). □

Now, we study the Fibonacci number.

Corollary 3.3. Let G be a connected and simple graph and let HG = {Hv}v∈V (G) be a family of pairwise disjoint graphs. Then

f (G[HG]) = 1 +

∑
∅̸=I∈Ind(G)

∏
v∈I

(f (Hv) − 1).

Particularly, if f (Hv) = c for every v ∈ V (G), then

f (G[HG]) = I(G; c − 1).

4. Applications

In this section, we study the independence polynomials and the Fibonacci numbers of several kinds of graphs. Let Kn
enote the complement of the complete graph. It is well known that I(Kn; x) = (1 + x)n.

.1. Complete graph network

Let H1,H2, . . . ,Hn be n disjoint graphs. The complete graph network is the Zykov sum Kn[H1,H2, . . . ,Hn]. By Theo-
em 3.2, we have

I(Kn[H1,H2, . . . ,Hn]; x) = I(H1; x) + I(H2; x) + · · · + I(Hn; x) + n − 1.

The complete multipartite graph Kn1,n2,...,ns is a special case of the complete graph network. It can be viewed as
Ks[Kn1 , Kn2 , . . . , Kns ]. Thus,

I(Kn1,n2,...,ns; x) = (1 + x)n1 + (1 + x)n2 + · · · + (1 + x)ns + s − 1.
135
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Fig. 1. Some windmill graphs.

Fig. 2. (Color online) Metro network of Harbin.

4.2. Generalized windmill graph

The windmill graphs were recently introduced by Estrada [5] and Kooij [14]. The windmill graph of the first type
W1(n, s) consists of n copies of the complete graph Ks, with every vertex connected to a common vertex, see Fig. 1(a).
The windmill graph of the second type W2(n, s, t) is the graph obtained from W1(n, s) by replacing the central vertex by t
entral vertices which form a complete graph Kt , see Fig. 1(b). The windmill graph of the third type W3(n, s, t) is the graph
btained from W1(n, s) by replacing the central vertex by t central vertices which form a empty graph Kt , see Fig. 1(c). It
as shown that windmill graphs arise naturally in certain real-world networks, such as citation networks [5], the public
ransport networks [14], see Fig. 2. Note that the network represented in Fig. 2(b) is not an actual windmill graph because
he numbers of vertices in the two cliques representing Line 1 and Line 3 are not equal. In order to get a better model,
e generalize the family of windmill graphs. Let H0,H1,H2, . . . ,Hn be n + 1 disjoint connected graphs. The generalized
indmill graph W4(H0,H1, . . . ,Hn) is the Zykov sum Sn+1[H0,H1, . . . ,Hn] where the central vertex of Sn+1 was replaced

by graph H0. For example, the graph in Fig. 2(b) is the generalized windmill graph W4(K1, K17, K4). Obviously, it holds that
W1(n, s) = W4(K1, Ks, . . . , Ks), W2(n, s, t) = W4(Kt , Ks, . . . , Ks), and W3(n, s, t) = W4(Kt , Ks, . . . , Ks). By Lemma 3.1, we
ave

I(W4(H0,H1, . . . ,Hn); x) =

n∏
k=1

I(Hk; x) + I(H0; x) − 1. (2)

Then,

I(W1(n, s); x) = (1 + sx)n + x;
I(W2(n, s, t); x) = (1 + sx)n + tx;
I(W3(n, s, t); x) = (1 + sx)n + (1 + x)t − 1.

4.3. Path network and cycle network

The path network and ring network were introduced by Jiang and Yan [11,12] who determined the two-point
resistances of these two networks. Given n positive integers m1,m2, . . . ,mn. The path network P[mi]

n
1 is the network

with vertex set V = V1 ∪ V2 ∪ · · · ∪ Vn, where Vi ∩ Vj = ∅ if i ̸= j and |Vi| = mi, and with edge set E = {uv : u ∈ Vi, v ∈

Vi+1, i = 1, 2, . . . , n−1}. The ring network C[mi]
n
1 is the network with vertex set V = V1 ∪V2 ∪· · ·∪Vn, where Vi ∩Vj = ∅

if i ̸= j and |Vi| = mi, and with edge set E = {uv : u ∈ Vi, v ∈ Vi+1, i = 1, 2, . . . , n}, where Vn+1 = V1. We denote by
P[m] and C[m] the path network and the ring network when m = m for 1 ≤ i ≤ n, respectively. Clearly, P[m] is the
i
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composition graph Pn[Km] and C[m] is the composition graph Cn[Km]. According to Lemma 2.2(iii,vi) and Corollary 3.3, we
an derive their Fibonacci numbers,

f (P[m]) =

⌊
n+1
2 ⌋∑

k=0

(
n + 1 − k

k

)
(2m

− 1)k;

f (C[m]) = 1 +

⌊
n
2 ⌋∑

k=1

n
k

(
n − 1 − k
k − 1

)
(2m

− 1)k.
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